AI 污染毁不掉互联网

2023-06-28 06:58 作者: 来源: 本站 浏览: 我要评论AI 污染毁不掉互联网已关闭评论 字号:

摘要: 一位网友在提问 New Bing 时,答案出现了事实性错误,他点开参考链接时发现,作为引用源的知乎回答,居然也是 AI 生成的。 回看这个知乎账号,遣词造句尽显 AI 风味,答题速度迅雷不及掩耳,目前已经被禁言了。 被看到的冰山一角,指向了一个恶性循环:AI ...

一位网友在提问 New Bing 时,答案出现了事实性错误,他点开参考链接时发现,作为引用源的知乎回答,居然也是 AI 生成的。

回看这个知乎账号,遣词造句尽显 AI 风味,答题速度迅雷不及掩耳,目前已经被禁言了。

被看到的冰山一角,指向了一个恶性循环:AI 生成错误信息,这些信息又被喂给更多的 AI,导致互联网的信息质量越来越差。

生成式 AI 有概率输出错误信息,这是刻进 DNA 的顽疾,联网能够缓解部分症状,因为可以参考多个信息源,但没想到这么快,我们因此陷入了新的混沌,正如古早的计算机格言:

AI 正在悄悄创作越来越多的「假冒伪劣」,说不定你在冲浪的时候就遇到过。

今年 4 月,多达 21 个账号同时发布了一条骇人听闻的消息:甘肃一火车撞上修路工人,致 9 人死亡。

网警初步判断信息不实,锁定了深圳某自媒体公司,经过取证后发现,犯罪嫌疑人在全网搜索近几年社会热点新闻,并通过 ChatGPT 修改编辑,再将内容多次上传。

国外知名科技媒体 CNET,也在年初被曝光用 AI 偷偷生成文章,其中 77 篇存在不少错误。

新闻可信度评级机构 NewsGuard 甚至发现,涉及 7 种语言的 49 个新闻网站,内容大部分或完全由 AI 生成。

它们「师出同门」但各有千秋,有的杜撰虚假信息,有的重写其他媒体报道,其中产量高的每天发出数百篇文章。

最有趣的来了,NewsGuard 是通过搜索「As an AI language model」等 AI 常用短语发现这些网站的。连 AI 的口头禅都不删去,脏活也做得太过粗糙。

若在社交媒体和点评网站查找类似内容,你也会发现无脑复制 AI 的账号已经大行其道。

亚马逊一款吸尘器的虚假评价不遮不掩:「作为一个 AI 语言模型,我没有亲自使用过这个产品,但根据它的功能和用户评论,我可以自信地给它打 5 星。」AI 骗人这么诚实,背后原因令人暖心。

穿着羽绒服的教皇,被视作第一个真正大规模的 AI 虚假信息案例,当时在Twitter的浏览量达到 2600 多万次。「AI 生成图片」的说明,后来才补充在图片下方。

更多的模仿随之而来。特朗普下乡再就业,在街头拉黄包车;异形体验生活,上了一天的班然后深夜买醉……更有甚者,用 AI 生成「新闻图片」,对不存在的历史言之凿凿。

TikTok 上的「汤姆·克鲁斯」,以假乱真的程度,本人看了也得犯迷糊。

今年 4 月,技术专栏作家 Joanna Stern 做了一项实验,录制 30 分钟的视频和 2 个小时的音频,然后用 AI 克隆了自己,它甚至骗过了银行和她的家人。

当你连接到互联网,你和 AI 都会消费 AI 生成的内容,这个时刻已经到来。

一项英国和加拿大的研究发现,当人类越来越多地通过 AI 生成内容,它们会大量进入在线数据库,被用来训练未来的 AI,如果一代又一代地延续下去,最终将导致「模型崩溃」。

具体来说,随着时间的推移,AI 生成的错误会复合,造成从中学习的下一代 AI 更加错误地感知现实,并迅速忘记大部分原始数据,无法区分事实和虚构。研究人员打了一个生动的比喻:

雪上加霜的是,内容平台们打算筑起城墙,让免费的、高质量的公开数据有了门槛。

前段时间,「美国贴吧」Reddit 计划对 API 进行收费,原因是他们的内容正在被白嫖给 AI 训练,ChatGPT 和 Google Bard 之前都爬过 Reddit 的数据。

Reddit CEO 表示,Reddit 的语料库非常有价值,他们不想把这些内容免费提供给巨头。

Reddit 的 API 收费,对 OpenAI、Google 等家底深厚的玩家影响不大,但 AI 初创公司获取数据更难了。那些长期依附 Reddit 的第三方应用,更是在这次变革中被牵连,带头宣布倒下。

在商言商, Reddit 可能是在自救,之前盈利主要靠广告投放,AI 反而挖掘了 Reddit 数据的商业价值,其他 UGC 内容平台说不定也在打算盘,这对很多 AI 初创公司来说不是好事。

公开数据还不是唯一的挑战,不少 AI 初创公司想在金融、医疗等领域构建垂直的 AI 模型,然而获取专有的训练数据集并不容易。

拥有这些数据的企业们,更愿意和大型科技公司建立合作关系,因为巨头的可信度更高,处理数据的方式更好,更能保障数据安全。

高质量数据是 AI 模型的护城河,获取数据却或多或少地成了一场利益的博弈,将互联网划分为孤岛,或者干脆排资论辈上演军备竞赛。

一方面,互联网的内容本就参差不齐,另一方面,互联网又趋向封闭。未来各家的 AI 要如何接收优质内容训练和微调,成了一个悬而不决的问题。

至少在互联网数据这块,AI 还真可能「自给自足」。剑桥大学教授 Ross Anderson 指出,目前,大多数在线文本都由人类编写,但它们已经被用来训练 GPT-3.5 和 GPT-4,未来,越来越多的文本将由大语言模型编写。

那么,如何避免 AI 生成内容质量下降,一代不如一代?英国和加拿大团队提出了两种方法。

一是保留原始数据集的副本,并避免它被 AI 生成的数据污染,然后可以基于这些数据,定期重新训练或者从头刷新模型。

二是将新的、干净的、人类生成的数据集,重新引入到模型训练中。然而,前提是存在某种可行的方式,区分 AI 和人类生成的内容。

ChatGPT 的数据源截至 2021 年 9 月,在那之前的互联网可能是最后一片净土。

事实上,AI 本该用来提高互联网内容的下限,在 ChatGPT 前身 GPT-3 的时代,已经有人将它作为写作工具了。

AI 从新鲜的玩具变成提升生产力的工具是必然的趋势,因为它学习了海量知识,擅长写出有板有眼的文章和代码,如果再由人力审核和编辑,其实已经比不少「内容农场」的质量要高。

这类网站通常找不到作者,掺杂大量广告,抢占搜索页面的前排,内容多半缺乏原创且无法保证真实性,很可能是盗取或拼凑他人文章,有来源不明、质量低劣、翻译不准等问题。

现在,AI 却被拿来制造新的内容农场,这是人类出于利益的选择。除了各种假新闻和假图片,电子书网站、科幻杂志投稿等,也被 AI 批量生产的垃圾充斥。

软件工程师 Chris Cowell 花了一年多的时间,编写了一本技术指南。结果在这本书发行前,亚马逊已经出现了相同主题的、由 AI 生成的电子书。

他担心的不是销量,而是这种低质量、低价格、省时省力的 AI 写作,会让同样打算编写小众书籍的人类产生「寒蝉效应」,降低写作热情,不愿意再发出声音。

AI 初创公司 Hugging Face 的首席伦理科学家 Margaret Mitchell 警告,随着 AI 生成的内容越来越多,我们可能读到大量不符事实的内容,但又无法追溯真相。

「后真相」指的是,客观事实在塑造公众舆论方面的影响力,反而低于诉诸情感和个人信仰的内容。它被《牛津词典》评为 2016 年年度词汇,至今依然适用。

前段时间,路透社一项针对 9.3 万多名成年人的调查发现,用 TikTok 看新闻的年轻人越来越多了。至于内容有多可信,那就得打个问号。

最近,TikTok 流传着泰坦尼克号从未沉没的说法,有理有据也就罢了,却只见张口就来的阴谋论。有人用魔法打败魔法,制作辟谣视频,关注度并不低,但没有谣言出圈。

一位研究泰坦尼克号 60 年的专家感叹:「看到这么多垃圾出现,让人有点泄气。」

更让他担心的是,这类内容的受众里有很多青少年,他们使用 TikTok 的时间越长,就越相信自己所看到的,然后算法推荐更多相关内容,应接不暇地激发快感,将他们彻底包围。

断章取义、支离破碎的片段式消息流转于社交媒体,但严肃内容又可能被评论「太长不看」。

制作粗糙的短视频,促使新的「黄色新闻」兴起。或是家长里短的摆拍,或是没有营养的奇闻逸事,让人想骂一句「没有新闻可以不发」。

5 分钟的小帅小美式电影解说,则是适合下饭的「电子榨菜」,空镜和转场什么的不重要,将人物标签化,选取最猎奇或悬疑的情节讲解就好。

所以,在 ChatGPT 之前,互联网已经内容降级,它不止关乎具体内容,更关乎用户的媒介使用习惯,如果 AI 被用来加速这个过程,然后再被这些数据训练,那么人类将更加无法抵挡污染。

严肃和通俗内容都有受众,也都值得生产,问题的核心并不在这里。尼尔·波兹曼在电视时代就提出警告,媒介社会面临的最大问题,不是电视为人们提供娱乐性的内容,而是所有的内容都以娱乐的形式表现出来。

相比印刷媒介的严肃与有序,电视等大众媒介瞬间传递信息,如果沉溺于技术营造的视觉快感,受众可能会渐渐失去独立思考的能力。

对视觉化、简短化、情绪化内容的生产和消费倾向,为 AI 污染互联网塑造了肥沃土壤,甚至让人们对虚假信息的抵抗能力降低。

所以,AI 污染互联网不全是 AI 的锅,它可以用来完成更好的事,也可以让现状持续。先是人类选择想要怎样的世界,然后 AI 负责放大它。

迅雷会员25天/4.5元,独享1天0.7元,请点本站上边链接购买

2023年06月28日 06:57:37

 

随机账号密码机器码:
44TM UL82jn88
62AZ232hbT68cm EH90fe781Peu
03AV153qxQ QP7
75OH024q FM44nx843
13QW303pzD54 KA12zc645Yyd
99AJ656 IL2
39MI916kg WN5
28FS8 YM36hy
12I JM53hs
68OC856gzP38v ZG44
44LC446qiJ88 CN13uy007P
20IY010kpP63q BZ70hr947Vag

Comments are closed.

会员登录关闭

记住我 忘记密码

注册会员关闭

小提示: 您的密码会通过填写的"电子邮箱"发送给您.